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ABSTRACT
Information Retrieval (IR) systems primarily rely on users’ ability
to translate their internal information needs into (text) queries.
However, this translation process is often uncertain and cognitively
demanding, leading to queries that incompletely or inaccurately
represent users’ true needs. This challenge is particularly acute for
users with ill-defined information needs or physical impairments
that limit traditional text input, where the gap between cogni-
tive intent and query expression becomes even more pronounced.
Recent neuroscientific studies have explored Brain-Machine In-
terfaces (BMIs) as a potential solution, aiming to bridge the gap
between users’ cognitive semantics and their search intentions.
However, current approaches attempting to decode explicit text
queries from brain signals have shown limited effectiveness in learn-
ing robust brain-to-text representations, often failing to capture
the nuanced semantic information present in brain patterns. To
address these limitations, we propose BPR (Brain PassageRetrieval),
a novel framework that eliminates the need for intermediate query
translation by enabling direct retrieval of relevant passages from
users’ brain signals. Our approach leverages dense retrieval ar-
chitectures to map EEG signals and text passages into a shared
semantic space. Through comprehensive experiments on the ZuCo
dataset, we demonstrate that BPR achieves up to 8.81% improve-
ment in precision@5 over existing EEG-to-text baselines, while
maintaining effectiveness across 30 participants. Our ablation stud-
ies reveal the critical role of hard negative sampling and specialised
brain encoders in achieving robust cross-modal alignment. These
results establish the viability of direct brain-to-passage retrieval
and provide a foundation for developing more natural interfaces
between users’ cognitive states and IR systems.
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1 INTRODUCTION
One of the fundamental challenges in Information Retrieval (IR)
lies in bridging the gap between users’ core information needs (INs)
and their external formulation as (textual) queries [2, 22, 47]. The
cognitive complexity of query formulation often results in queries
that incompletely or inaccurately represent users’ true needs, while
physical constraints of input mechanisms can create additional
barriers to effective information access [2, 67]. This challenge is
particularly acute for users with ill-defined information needs or
physical impairments that limit traditional text input, where lim-
itations in conventional interaction mechanisms can potentially
exclude significant user populations from effective information ac-
cess [67]. Foundational models of information-seeking behaviour
illuminate the depth of this challenge. Taylor [60] demonstrates
that users must progress through distinct stages, from a visceral,
unconscious information need to a compromised form suitable for
an IR system, a progression that often results in significant infor-
mation loss. Kuhlthau [31] extends this understanding by revealing
how users struggle with uncertainty and vague thoughts during
early search stages, precisely when they must articulate their needs
most explicitly. The combination of these cognitive and physical
barriers creates a fundamental gap between users’ internal states
and their ability to externalise these states through conventional
interaction mechanisms [2, 22].

Recent neuroscientific advances have revealed promising ap-
proaches to bridging this gap through direct measurement of users’
cognitive states during information interaction [11, 16, 47]. Stud-
ies have demonstrated that core IR processes manifest as distinct
brain signatures, from information need formation [42, 46] to rel-
evance judgements [1, 27, 53] and search satisfaction [50]. These
neurophysiological insights have motivated researchers to explore
brain-based approaches for enhancing query formulation. Initial
implementations focused on Steady-State Visually Evoked Poten-
tials (SSVEP)[67], these approaches primarily changed the input
mechanism rather than addressing the fundamental gap between
need and expression. More recent work using functional Magnetic
Resonance Imaging (fMRI) and Magnetoencephalography (MEG)
has demonstrated increasingly sophisticated semantic decoding
capabilities [23], from mapping word-level representations [44]
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Figure 1: A) Traditional EEG-to-text pipeline requiring in-
termediate query decoding before retrieval. The approach
first translates EEG signals into text queries before apply-
ing traditional (lexical/neural) text retrieval methods. B) Our
proposed direct EEG query retrieval framework that elimi-
nates the translation step by learning a shared embedding
space between EEG signals and text passages, enabling direct
relevance scoring between brain activity and documents.

to reconstructing continuous narratives [21] and generating natu-
ral language from brain patterns [69]. While these advances vali-
date the possibility of capturing information needs directly from
brain signals, both fMRI and MEG have severe practical limitations
for real-world IR applications, requiring immobile participants in
specialised facilities [27, 70] and involving prohibitive equipment
costs [1].

Electroencephalography (EEG) offers a more practical path for-
ward, providing high temporal resolution and mobility at a signifi-
cantly lower cost [3, 29, 39, 40]. Recent studies have demonstrated
EEG’s ability to detect relevance judgments [1, 15, 43, 53, 54], sat-
isfaction [50], and enable direct document recommendation from
brain signals during reading [11, 71]. However, current EEG-based
approaches for document retrieval require the translation of brain
signals into textual queries [32, 65] (see Figure 1), which recent stud-
ies have identified as ineffective for learning generalisable semantic
representations from EEG and rely on the memorisation of training
data and teacher forcing to generate a textual query [25]. As a solu-
tion to this problem, we present BPR (Brain Passage Retrieval), a
framework that eliminates this translation step entirely by directly
mapping brain signals to dense passage representations. Rather
than attempting to convert brain activity into text queries, BPR
projects brain patterns into the same semantic space as passages,
treating brain activity itself as a query representation (see Figure
1). Our approach builds on dense retrieval architectures [26] but
adapts them for brain data through specialised EEG encoders and
cross-modal negative sampling strategies. Our contributions in-
clude:

• The development of BPR, a novel framework for direct EEG-
to-passage retrieval that achieves a 8.81% improvement in
Precision@5 over existing approaches by eliminating inter-
mediate text translation
• An effective adaptation of dense retrieval architectures for
brain signals, incorporating specialised EEG encoders and
cross-modal negative sampling to learn effective representa-
tions

• Empirical validation demonstrating the first successful se-
mantic alignment between EEG signals and document rep-
resentations, with comprehensive ablation studies across
multiple evaluation settings

Our empirical results establish that direct brain-to-passage retrieval
outperforms existing approaches and demonstrates the feasibility
of meaningful semantic alignment between brain signals and text
without intermediate translation steps. These findings represent a
promising step toward IR systems that can detect and respond to
information needs in their most visceral form.

2 RELATEDWORKS
2.1 Neuroscience & Information Retrieval
Neuroscience has transformed our understanding of how users in-
teract with information systems by revealing the brain mechanisms
underlying core IR processes. Early fMRI studies provided crucial
insights into the formation of information needs, with Gwizdka et al.
[16], Moshfeghi et al. [47] identifying specific activation patterns in
the posterior cingulate cortex that signal when users recognise gaps
in their knowledge. This work was extended by Michalkova et al.
[42], who characterised the metacognitive states that precede active
search behaviour, demonstrating that information needs have dis-
tinct brain signatures before users can consciously articulate them.
The neuroscientific basis of IR extends beyond information need
formation. Using fMRI, Moshfeghi et al. [45] mapped how relevance
judgments manifest in brain activity, while following work with
EEG by Allegretti et al. [1] provided converging evidence that these
judgments have consistent neurological correlates across users and
contexts. Gwizdka et al. [15] revealed how attention and cognitive
load fluctuate throughout the search process, while Ji et al. [24]
demonstrated how combining EEG with eye-tracking can reveal
distinct patterns in information-seeking behaviour. Collectively,
these studies established that fundamental IR concepts have reliable
neurological signatures that emerge before explicit user actions.

These neurophysiological insights have driven the development
of systems attempting to bridge the gap between internal infor-
mation needs and explicit queries. Early applications focused on
enhancing existing IR interfaces through neurological feedback,
with Eugster et al. [12] developing methods to detect term rele-
vance from brain signals during search tasks. Moreover, McGuire
and Moshfeghi [41] achieved 90% accuracy in predicting informa-
tion need formation from EEG signals during question-answering
tasks, suggesting the possibility of detecting search intentions be-
fore query formulation.

In parallel to these works, researchers also began exploring di-
rect brain-machine interfaces (BMIs). SSVEP-based systems [62]
enabled users to construct queries through brain signals by select-
ing characters from a virtual keyboard, with each key flickering at
a unique frequency detectable in the visual brain-machine cortex.
While Chen et al. [7] achieved impressive accuracy (91%) with this
approach, these systems still required users to explicitly construct
queries, maintaining rather than eliminating the translation burden
between information need and query formulation. This limitation
highlighted a crucial challenge: while neuroscience had revealed
how information needs manifest in the brain, and while systems
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could detect these needs with high accuracy, the fundamental prob-
lem of translating internal cognitive states into effective queries
remained unsolved. This realisation motivated a shift toward di-
rect semantic decoding from brain activity, attempting to capture
information needs in their most visceral form through explicit
translation into query terms.

2.2 Semantic Decoding of Brain Signals
Recent advances in semantic decoding from fMRI scans have shown
promising results in reconstructing natural language from brain
activity. Ye et al. [69] demonstrated the semantic reconstruction of
continuous language by mapping brain representations to semantic
space using large language models, while Ye et al. [70] showed
applications for query enhancement in retrieval models. Magne-
toencephalography (MEG) has provided complementary insights,
withMitchell et al. [44] and Kauppi et al. [27] achieving semantic de-
coding with high temporal resolution. However, both technologies
have significant practical limitations for real-world implementa-
tion into present IR methodologies. fMRI requires participants to
remain motionless within the scanner bore, where minimal head
movements can corrupt data quality [47]. MEG systems similarly
constrain movement and require magnetically shielded rooms [27].

These physical requirements, combined with high equipment
costs, limit deployment in real-world IR applications. These con-
straints motivated researchers to investigate more practical record-
ing methods, namely EEG (as discussed in Section 1). Wang and
Ji [65] introduced EEG-to-Text (EEG2Text), formulating EEG de-
coding as a machine translation problem with an EEG encoder
and pre-trained decoder (BART) optimised to minimise the cross-
entropy loss between the predicted text output and true text labels
(see Figure 1). This framework influenced subsequent works such
as DeWave [10], which incorporated discrete tokens to improve
decoding performance. However, recent analyses have identified
methodological limitations in these translation approaches. Jo et al.
[25] highlighted that these models rely on teacher forcing [17]
during inference (a technique where the model uses ground truth
tokens rather than its own predictions during sequence generation),
leading to inflated performance metrics. Additionally, the models
show similar performance with random noise input compared to ac-
tual EEG signals, suggesting that the model may learn to memorise
dataset artefacts rather than meaningful brain-to-text mappings.

Further work has explored the adaptation of speech models
for EEG decoding. BrainEcho [34] adapted the Whisper model
for EEG-to-text conversion, but its reliance on parallel audio pro-
cessing makes it unsuitable for comparison in naturalistic reading
tasks. These methods also use smaller vocabularies than established
EEG2Text studies [10, 65], making direct comparisons impractical.
The observed limitations of current EEG-to-text translation ap-
proaches highlight a fundamental challenge in facilitating passage
retrieval using brain signals. Rather than pursuing further refine-
ments to these translation methods, we propose eliminating the
intermediate translation step entirely, and instead directly mapping
EEG query representations to a shared semantic text space (see
Figure 2).

3 METHODOLOGY
3.1 Task Formulation
While neural retrievers have significantly advanced the capabilities
of IR systems through their ability to capture deep semantic rela-
tionships and contextual understanding beyond lexical matching
[26, 28, 55, 68], they still rely on users translating their INs into
explicit textual queries (as discussed in Section 1). This translation
process presents fundamental challenges, as users often struggle to
precisely specify their information needs [2], particularlywhen they
are uncertain about what information would resolve their anoma-
lous state of knowledge. Recent work in BMIs has demonstrated the
feasibility of decoding semantic information directly from brain sig-
nals [4, 21, 44]. While these advances suggest promising directions
for enhancing query formulation, current approaches face signifi-
cant practical and technical limitations due to their demonstrated in-
ability to learn robust brain-to-text representations [25, 65]. Rather
than attempting to translate brain signals into explicit queries, we
propose a direct brain-to-passage mapping approach that could bet-
ter preserve the richness of users’ cognitive states during reading
while avoiding the complexities of intermediate translation steps.

Formally, let 𝐷 represent a passage as a sequence of 𝑙 words
{𝑤1,𝑤2, ...,𝑤𝑙 }. As a subject reads this passage, their brain activity
is recorded using an EEG device, producing a corresponding signal
sequence 𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑙 }. Each signal 𝑒𝑖 captures the neurological
response when reading word𝑤𝑖 through 𝑐 EEG channels and 𝑓 fre-
quency bands, resulting in a feature vector 𝑒𝑖 ∈ R𝑐 ·𝑓 . Given these
EEG recordings and a corpus of 𝑁 passages𝐶 = {𝑝1, 𝑝2, ..., 𝑝𝑁 }, our
goal is to retrieve the 𝑘 most relevant passages 𝑅 = {𝑝𝑖1 , 𝑝𝑖2 , ..., 𝑝𝑖𝑘 }
in response to an EEG query 𝑞𝑒 ∈ R𝑙×(𝑐 ·𝑓 ) . This formulation ex-
tends traditional dense passage retrieval [26] by replacing the text
query encoder with an EEG query encoder. Our proposed model
employs a dual-encoder architecture with the following compo-
nents:
• An EEG encoder 𝐸𝜓 : 𝑞𝑒 → R𝑑 that projects brain signals
to dense vectors
• A passage encoder 𝐸𝑝 : 𝑝 → R𝑑 that maps text to the same
embedding space

During inference, relevance between an EEG query and passage
is computed using a similarity function 𝑠 that measures the semantic
similarity between the encoded query and passage representations:

score(𝑞𝑒 , 𝑝) = 𝑠 (𝐸𝜓 (𝑞𝑒 ), 𝐸𝑝 (𝑝)) (1)

The final retrieval process identifies the top-𝑘 most relevant
passages by maximising the similarity scores:

𝑅 = argmax
𝑅′⊂𝐶, |𝑅′ |=𝑘

∑︁
𝑝∈𝑅′

score(𝑞𝑒 , 𝑝) (2)

This framework enables direct mapping between brain signals
and text passages (see Figure 2) while maintaining the information
present in brain activity during natural reading tasks.

3.2 Dataset Creation
Training neural retrieval models requires large quantities of query-
document pairs [26], along with effective negative sampling strate-
gies to create challenging contrasts during training. However, un-
like traditional IR datasets [48], EEG datasets of sufficient scale
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Figure 2: Overview of the BPR architecture. A) EEG encoder processes EEG signals recorded during naturalistic reading,
using eye-tracking fixations to align EEG data with individual words. The architecture consists of initial projection layers,
positional encoding, and transformer layers with self-attention mechanisms to generate EEG query representations. B) Passage
encoder leverages a frozen pre-trained language model with an additional lightweight adaptation layer to generate passage
representations. C) Shared semantic space visualisation demonstrating how EEG queries (green) and passages (red) are mapped
into a common embedding space, where 𝑝+ indicates positive passage matches and other red cubes represent negatives 𝑝− .
Flame icons indicate trainable parameters while snowflakes indicate frozen model components.

with predefined query-document pairs are not readily available.
The ZuCo dataset [19, 20] was selected for this work as it repre-
sents one of the few publicly available large-scale EEG datasets
with paired text recordings during natural reading, containing syn-
chronised neurological signals and eye-tracking data from 1,000+
English sentences read by multiple participants. To address the lim-
itation of predefined query-document pairs, we adapt the inverse
cloze task (ICT) framework [5, 33] to construct synthetic training
data from our EEG recordings. Following prior examples in dense
retrieval [26, 55, 68], the ICT approach enables us to generate query-
document pairs by treating spans of text as implicit queries while
considering their surrounding context as relevant documents.

Formally, using the notation established earlier (where 𝐷 =

{𝑤1,𝑤2, . . . ,𝑤𝑙 } represents a passage and 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑙 } rep-
resents its corresponding EEG recordings), we extract a text span
𝑆 = {𝑤𝑖 ,𝑤𝑖+1, . . . ,𝑤𝑖+𝑗 } to serve as a pseudo-query. The EEG sig-
nals corresponding to this span 𝑞𝑒 = {𝑒𝑖 , 𝑒𝑖+1, . . . , 𝑒𝑖+𝑗 } form our
query representation. With probability 𝑝𝑚𝑎𝑠𝑘 (set to 0.9 in our
implementation), we remove this span from the passage to form
the positive document: 𝐷+ = {𝑤1, . . . ,𝑤𝑖−1,𝑤𝑖+𝑗+1, . . . ,𝑤𝑙 }. Other-
wise, with probability 1 − 𝑝𝑚𝑎𝑠𝑘 , we retain the query span in the
document, creating a more challenging learning scenario where
the model must learn robust matching strategies beyond exact to-
ken matching. Algorithm 1 details our ICT implementation. The

algorithm takes as input the passage tokens, their corresponding
EEG signals, query length ratio, and mask probability, then:

(1) Computes the query length as a fraction of the total docu-
ment length.

(2) Randomly selects a starting position for the query span.
(3) Extracts both the text query and its corresponding EEG sig-

nals.
(4) Randomly decides whether to remove the query span from

the document based on 𝑝𝑚𝑎𝑠𝑘 .
(5) Returns the EEG query and document pair for training.

Table 1: Dataset statistics and lexical overlap between splits.

Metric Train Dev Test

Total queries 2,194 286 298
Total passages 2,195 284 297
Total words 41,148 5,067 5,594
Unique words 5,475 980 1,093
Avg. passage length 13.5 ± 7.2 12.4 ± 8.1 13.7 ± 7.3
Avg. query length 3.9 ± 1.4 3.8 ± 1.5 3.9 ± 1.4

Lexical Overlap

Train – 0.083 0.091
Dev – – 0.118
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Algorithm 1 Inverse Cloze Test for Brain Query Generation

Require: Document tokens 𝐷 = {𝑤1,𝑤2, . . . ,𝑤𝑙 }, EEG signals
𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑙 }, mask probability 𝑝𝑚𝑎𝑠𝑘

Ensure: EEG query 𝑞𝑒 , modified document 𝐷′
1: 𝐿 ← ⌊𝑙 · 0.3⌋ ⊲ Set query length to 30% of document
2: Select random index 𝑖 where 0 ≤ 𝑖 ≤ 𝑙 − 𝐿
3: 𝑄 ← {𝑤𝑖 ,𝑤𝑖+1, . . . ,𝑤𝑖+𝐿−1} ⊲ Extract text span
4: 𝑞𝑒 ← {𝑒𝑖 , 𝑒𝑖+1, . . . , 𝑒𝑖+𝐿−1} ⊲ Extract corresponding EEG
5: 𝑢 ∼ Uniform(0, 1) ⊲ Sample uniform random number
6: if 𝑢 < 𝑝𝑚𝑎𝑠𝑘 then
7: 𝐷′ ← {𝑤1, . . . ,𝑤𝑖−1,𝑤𝑖+𝐿, . . . ,𝑤𝑙 } ⊲ Remove span
8: else
9: 𝐷′ ← 𝐷 ⊲ Keep original document
10: end if
11: return 𝑞𝑒 , 𝐷′

Drawing on established principles from representation learning
[9, 61], we design our dataset creation pipeline to encourage seman-
tic understanding over surface-level patterns. We employ random
span selection with probabilistic span removal and proportional
query lengths (𝑞 = 0.3). These choices, informed by prior work
on regularisation in neural sequence models [9, 33], prevent the
model from relying on simple heuristics such as length matching
or exact term matching, encouraging it to learn deeper semantic
relationships between the EEG query and the passage text.

3.3 Model Architecture
The EEG query encoder builds upon the transformer framework
[61]. Given an input EEG sequence 𝑋 ∈ R𝑙×𝑓 , where 𝑙 is the se-
quence length and 𝑓 = 840 represents features from 105 channels
across 8 frequency bands, the encoder projects the input to dimen-
sion 𝑑 :

𝐻0 = 𝑋𝑊𝐸 + 𝑏𝐸 (3)
where𝑊𝐸 ∈ R𝑓 ×𝑑 and 𝑏𝐸 ∈ R𝑑 are learnable parameters. Follow-
ing prior work [9], a learnable [CLS] token 𝑒𝑐𝑙𝑠 is prepended to
aggregate sequence-level representations:

𝐻 ′0 = [𝑒𝑐𝑙𝑠 ;𝐻0] (4)

The sequence then passes through 𝐿 transformer layers with
self-attention mechanisms (see Section A) Figure 2):

𝐻𝑙 = TransformerLayer𝑙 (𝐻𝑙−1), 𝑙 ∈ [1, 𝐿] (5)

For the passage encoder, we use a pre-trained language model
followed by a lightweight adaptation layer. Given the limited quan-
tity of EEG-text paired data available for this task (see Section
3.2), fine-tuning large language models can lead to catastrophic
forgetting of pre-trained knowledge [30] and over-fitting to noise
in the brain signals [35], particularly in cross-modal settings with
inherently variable data such as EEG. Taking inspiration from work
on efficient adaptation of large pre-trained models [52], we instead
add a single transformer layer on top of the frozen language model
(see Section B), Figure 2). Similar to the EEG encoder, the language
model uses a [CLS] token to capture sequence-level semantics:

𝑃0 = FrozenLM( [𝑝𝑐𝑙𝑠 ;𝑝]) (6)

𝑃1 = AdaptationLayer(𝑃0) + LayerNorm(𝑃0) (7)
In our empirical evaluation of sequence pooling strategies, we

compared various approaches for generating the final representa-
tions, including mean pooling, max pooling, and [CLS] token pool-
ing across the final layer. Our experiments consistently showed that
using the [CLS] token representation outperformed other pooling
methods (see Section 6). This finding aligns with similar observa-
tions in cross-modal learning [35, 38]. The final representations
for both modalities are thus computed using their respective [CLS]
tokens:

𝑞 =𝑊𝑂𝐻
𝑙
𝑐𝑙𝑠
+ 𝑏𝑂 (8)

𝑝 = 𝑃1
𝑐𝑙𝑠

(9)

where𝑊𝑂 ∈ R𝑑×𝑑 is a learnable projection matrix and 𝑏𝑂 ∈ R𝑑
is the bias term that map the [CLS] token representations to the final
embedding space. Both representations undergo L2 normalisation
before similarity computation (see Figure 2 for an overview of the
architecture).

3.4 Training Objective and Negative Sampling
Effective negative sampling strategies and appropriate loss func-
tions have proven crucial for contrastive learning in dense retrieval
systems [26, 68].

For training our model, we employ a contrastive loss that follows
the LCE (latent cross-entropy) formulation [14], a conditioned vari-
ant of InfoNCE that enables contrastive learning across modalities:

Lc = − log
exp(𝑠 (𝑞𝑒 , 𝑝+)/𝜏)

exp(𝑠 (𝑞𝑒 , 𝑝+)/𝜏) +∑𝑝−∈𝑁𝑏
exp(𝑠 (𝑞𝑒 , 𝑝−)/𝜏) (10)

where 𝑁𝑏 represents the set of in-batch negatives, and 𝜏 is the
temperature parameter controlling the sharpness of the relevance
score distribution for each query.

During preliminary training with only the contrastive loss, we
observed severe representation collapse, where EEG embeddings
clustered tightly in the representation space, significantly limiting
the model’s discriminative ability. This phenomenon has been well-
documented in cross-modal contrastive learning, particularly when
dealing with high-dimensional, noisy data such as EEG signals
[63]. To address this representation collapse issue, we incorporate
a uniformity loss that encourages embeddings to be uniformly
distributed on the unit hypersphere [64]:

Lu = logE𝑞𝑖 ,𝑞 𝑗∼𝑝data [𝑒−2 |𝑞𝑖−𝑞 𝑗 |2 ] (11)

Following Wang and Isola [64] and Chen et al. [6], we combine
these components into our total training objective:

Ltotal = Lc + 𝜆Lu (12)

where 𝜆 is empirically set to 0.1, through ablation studies, this
combination was found to be important for maintaining retrieval
performance in our model (see Section 6).

Our negative sampling approach utilises computationally effi-
cient in-batch negatives to create a robust training signal. For each
EEG query 𝑞𝑒 in a batch of size 𝐵, we leverage (𝐵 − 1) in-batch
negatives - effectively random samples that can be computed ef-
ficiently through batch-wise operations. A key challenge for our
model training within the ZuCo dataset [19, 20] is that multiple
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participants review the same passages, creating potential confounds
where EEG signals from different participants reading the same
text could be incorrectly treated as negatives.

To address this challenge, we maintain subject-passage exclusion
mappings defined as:

𝐿(𝑝, 𝑠) = {(𝑝𝑖 , 𝑠 𝑗 ) ∈ 𝑃 × 𝑆 : 𝑝𝑖 = 𝑝 and 𝑠 𝑗 ≠ 𝑠} (13)

where 𝑃 represents the set of all passages and 𝑆 the set of all par-
ticipants. This formulation explicitly identifies combinations of
passages and subjects that should be excluded from the negative
sample pool. Specifically, for a given query from subject 𝑠 reading
passage 𝑝 , the lookup table 𝐿(𝑝, 𝑠) identifies all instances where
other subjects (𝑠 𝑗 ≠ 𝑠) read the same passage (𝑝𝑖 = 𝑝). During batch
construction, we filter out these combinations to ensure that EEG
signals from different participants reading identical content are
never treated as negative examples. This prevents the model from
learning to distinguish between subject-specific neural patterns
rather than content-based semantic differences, ensuring that the
model focuses on meaningful semantic distinctions rather than
idiosyncratic neurological responses to the same content.

4 EXPERIMENTAL SETUP
Our experimental investigation addresses four key questions re-
garding the effectiveness and implications of BPR:

• RQ1: Can EEG signals serve as effective query representa-
tions for dense passage retrieval?
• RQ2: Is EEG-based query representation generalisable across
subjects?
• RQ3: How does the effectiveness of BPR compare to EEG-
to-text based IR models?
• RQ4: How does the effectiveness of BPR compare to Text
based IR models?

4.1 Implementation
Our EEG encoder consists of a 3-layer transformer with 8 attention
heads [61]. For computational efficiency, we use DistilBERT 1 as our
text encoder, which provides comparable performance to BERT [9]
while being significantly lighter and faster [57]. The input dimen-
sion of 840 (corresponding to 105 channels × 8 frequency bands)
is projected to a model dimension of 512, with the final output
dimension aligned to match DistilBERT’s 768-dimensional repre-
sentations. The text encoder remains frozen during training with
only a lightweight single transformer adaptation layer fine-tuned
for cross-modal alignment [52]. For regularisation, we employ a
dropout rate of 0.1 throughout the network. Trainingwas conducted
on an NVIDIA A100 GPU using the AdamW optimiser [37] with an
initial learning rate of 1e-6 and weight decay of 0.1. We implement a
linear warmup schedule over the first 10 epochs followed by linear
decay. The training uses a batch size of 128, with gradient clipping
at a maximum norm of 1.0 [51]. Early stopping is implemented with
a patience of 5 epochs. For the contrastive learning objective, we
employ InfoNCE loss [49] with a temperature parameter 𝜏 = 0.07.

1https://huggingface.co/docs/transformers/en/model_doc/distilbert

4.2 Models and Baselines
To address our research questions regarding direct EEG query re-
trieval (RQ1) and comparative performance (RQ3), we evaluate
BPR against a set of representative baselines. We select EEG2Text
from Jo et al. [25] as our primary baseline for EEG query transla-
tion. While more recent approaches like DeWave [10] build upon
EEG2Text, they rely on the same fundamental translation archi-
tecture that Jo et al. [25] demonstrated to be ineffective, showing
similar performance with random noise input as with real EEG sig-
nals. Therefore, comparing against derivative approaches would not
provide additional insights into the effectiveness of direct retrieval
versus translation-based methods. For retrieval evaluation, we con-
struct E2T+Retriever baselines by first using the EEG2Text model2
to decode EEG signals into text queries, which are then passed
to textual retrieval models. We pair these decoded queries with
two distinct retrieval approaches: BM25 [56] and ColBERTv23 [58].
BM25 represents traditional lexical matching approaches, while
ColBERT serves as a state-of-the-art neural retriever, allowing us
to evaluate performance across both matching paradigms. We ad-
ditionally include text-only variants of both retrievers using the
original passage text as queries, establishing performance upper
bounds and quantifying the gap between EEG and textual queries
(RQ4).

4.3 Evaluation Protocol and Metrics
All experiments use 5-fold cross-validation with an 80-10-10 split
between training, development, and test sets (see Table 1). For a
fair comparison, we create controlled test conditions by varying
query-document lexical overlap at 0%, 25%, 50%, 75%, and 100%. This
variation enables analysis of how different retrieval mechanisms
handle semantic versus lexical matching [8, 13]. The EEG2Text
baselines are trained on identical data splits as BPR and evaluated
without teacher forcing [17]. Through empirical testing, we find
that 𝑝𝑚𝑎𝑠𝑘 = 0.9 provides optimal robustness against lexical mis-
match during BPR training (see Figure 3). To validate that our model
learns meaningful EEG-semantic mappings rather than exploiting
statistical artefacts (RQ1), we conduct control experiments using
random noise queries. For generalisation assessment (RQ2), we
implement leave-one-subject-out validation across all 30 partic-
ipants, providing insight into model robustness across different
neurological patterns [66]. Performance evaluation uses Mean Re-
ciprocal Rank (MRR) and Mean Precision at k = 5,10,20. These
metrics directly measure ranking effectiveness and retrieval suc-
cess at different depths in our binary relevance scenario, where each
EEG query corresponds to exactly one relevant passage. Through
this evaluation framework, we assess direct EEG retrieval viability,
model validity, cross-subject generalisation capabilities, and the
current gap between EEG and text-based retrieval performance.

5 RESULTS
Main Findings. Our experimental evaluation demonstrates three
key findings: (1) Direct brain-to-passage retrieval achieves signifi-
cantly better performance than existing EEG-to-text translation ap-
proaches, with BPR showing a 8.81% improvement in Precision@5
2https://github.com/NeuSpeech/EEG-To-Text
3https://huggingface.co/colbert-ir/colbertv2.0

https://huggingface.co/docs/transformers/en/model_doc/distilbert
https://github.com/NeuSpeech/EEG-To-Text
https://huggingface.co/colbert-ir/colbertv2.0
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Figure 3: Impact of query span masking probabilities (𝑝𝑚𝑎𝑠𝑘 )
on BPR lexical mismatch retrieval performance.

over baselines (p < 0.001) (Table 2); (2) The model exhibits robust
cross-subject generalisation, maintaining consistent performance
across 30 participants (mean P@5: 14.1%, SD = 2.1%) despite the
well-documented challenges of cross-subject EEG variability [66]
(Table 3); and (3) While a performance gap remains between EEG
and text queries (BPR P@5: 12.39% vs. ColBERT P@5: 48.86%), the
direct mapping approach shows promising effectiveness compared
to traditional query translation methods (Table 2), aligning with
recent findings in neurological-semantic decoding [21, 44]. These
results establish the viability of direct brain-passage retrieval while
highlighting specific areas for future advancement. We analyse
each finding in the following sections.

EEG-Passage Retrieval Effectiveness. To validate that BPR
learns meaningful neurological-semantic mappings rather than ex-
ploiting statistical artefacts, we compare its performance against a
random noise baseline that matches the statistical properties of EEG
signals. Our results (Table 2) demonstrate that BPR successfully
enables direct matching between EEG signals and text passages,
achieving statistically significant improvements across all evalua-
tion metrics (p < 0.001). The model shows substantial gains in rank-
ing effectiveness, with Precision@5 reaching 12.39% compared to
4.13% for the noise baseline—a nearly threefold improvement. This
performance advantage extends consistently across different rank-
ing thresholds: Precision@10 (20.57% vs. 6.86%) and Precision@20
(35.74% vs. 10.91%). The strong (MRR of 11.14% further indicates
BPR’s ability to position relevant passages higher in the ranking or-
der, significantly outperforming the noise baseline’s MRR of 3.71%.
The consistent performance improvements over matched noise sig-
nals, particularly at stricter evaluation thresholds (P@5, P@10),
provide strong evidence that BPR learns meaningful neurological-
semantic alignments rather than exploiting dataset artefacts. These
findings directly address RQ1 by demonstrating that EEG signals
recorded during naturalistic reading can serve as implicit queries
for passage retrieval, establishing the viability of direct brain-to-
passage mapping.

Cross-Subject Generalisation. To evaluate the model’s ability
to generalise across different EEG patterns, we conducted leave-
one-out cross-validation across all 30 participants. The results in
Table 3 demonstrate that cross-subject performance closely aligns

with our primary evaluation metrics, with leave-one-out valida-
tion achieving mean precision@5 of 14.1% (±4.2%), precision@10 of
21.5% (±4.8%), and precision@20 of 32.1% (±5.9%). The consistency
between generalised and leave-one-out performance is particularly
notable given the established challenges of subject variability in
EEG data [3, 66]. The MRR values remain especially stable (11.14%
vs 10.9%), suggesting the model maintains consistent ranking be-
haviour even when generalising to unseen participants. The per-
formance patterns across different k values provide additional evi-
dence of robust generalisation. While precision@5 shows slightly
higher performance in the leave-one-out setting (14.1% vs 12.39%),
the overall trend across metrics remains consistent with our base
model. The standard deviations in the leave-one-out evaluation
(±4.2% for P@5, ±4.8% for P@10) indicate moderate inter-subject
variability, demonstrating improved stability compared to previous
cross-subject EEG studies [65, 71]. This consistent performance,
combined with the relatively modest increase in standard deviation
from the base model to leave-one-out validation, suggests that the
BPR approach successfully learns generalisable EEG-semantic map-
pings rather than over-fitting to subject-specific patterns. These
findings directly address RQ2 by demonstrating that direct brain-
passage retrieval can effectively generalise across participants while
maintaining robust retrieval performance. The stability of these
results suggests promising potential for developing brain-based re-
trieval systems that can adapt to individual users while maintaining
consistent performance.

Comparison with EEG2Text. We evaluate BPR against two
state-of-the-art translation-based baselines that first decode EEG
signals into text queries before retrieval: (1) E2T+BM25, which
combines the EEG2Text decoder [65] with traditional lexical re-
trieval [56], and (2) E2T+ColBERT, which pairs EEG2Text with
the neural retriever ColBERTv2 [58]. This comparison directly
tests whether intermediate query translation provides benefits over
direct brain-passage mapping. Our experiments reveal that both
translation-based approaches perform only marginally better than
random noise, with E2T+BM25 achieving Precision@5 of 2.18% and
E2T+ColBERT reaching 3.58% (Table 2). These results align with
recent findings from Jo et al. [25], who demonstrated that current
EEG-to-text translation methods struggle to learn robust semantic
representations from brain signals. The comparable performance
between E2T+BM25 (MRR: 2.51%) and E2T+ColBERT (MRR: 3.77%)
suggests that the performance bottleneck lies in the translation step
itself, rather than the downstream retrieval method—a finding that
supports observations from other brain-semantic decoding studies
[21, 44]. In contrast, BPR’s direct mapping approach achieves sig-
nificantly higher performance (Precision@5: 12.39%, MRR: 11.14%),
representing a 8.81% improvement over the best translation baseline.
This substantial performance gain demonstrates the advantages of
preserving brain signal information through end-to-end learning,
similar to benefits observed in other cross-modal learning tasks
[35, 38]. These results directly address RQ3 by showing that elim-
inating intermediate translation steps can significantly improve
retrieval effectiveness when working with brain signals.

Brain-Text Performance Gap. Our evaluation (Table 2) re-
veals a significant but contextually important performance gap
between EEG and text-based retrieval methods. While traditional
approaches achieve higher precision (BM25 P@5: 37.92%, ColBERT
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Table 2: Retrieval performance comparison across different query modalities and retrieval methods. Results are averaged
across 5-fold cross-validation, with models evaluated on test sets containing varying degrees of query-passage overlap. Values
are reported as mean ± standard deviation across folds. Underlined values indicate a statistically significant improvement over
random noise baseline using a paired t-test (p < 0.001).

Query Modality Retriever Precision@5 Precision@10 Precision@20 MRR

Noise
E2T+BM25 2.13%±0.21 4.10%±0.41 10.89%±1.09 2.46%±0.25

E2T+ColBERT 3.53%±0.35 6.09%±0.61 12.34%±1.23 3.72%±0.37

BPR(ours) 4.13%±0.41 6.86%±0.69 10.91%±1.09 3.71%±0.37

EEG
E2T+BM25 2.18%±0.22 4.15%±0.42 10.95%±1.10 2.51%±0.25

E2T+ColBERT 3.58%±0.36 6.14%±0.61 12.41%±1.24 3.77%±0.38

BPR(ours) 12.39%±1.24 20.57%±1.86 32.74%±3.27 11.14%±1.11

Text BM25 37.92%±3.79 46.31%±4.63 57.80%±5.78 39.74%±3.97

ColBERT 48.86%±3.19 61.17%±2.22 68.31%±3.23 52.99%±2.60

Table 3: Comparison between main results and leave-one-
out cross-subject generalisation performance. All values are
reported as mean ± standard deviation across folds.

Eval Strategy P@5 P@10 P@20 MRR

Generalised 12.39%±1.24 20.57%±1.86 35.74%±3.27 11.14%±1.11

Leave-one-out 14.1%±4.2 21.5%±4.8 32.1%±5.9 10.9%±3.8

P@5: 48.86%), BPR demonstrates meaningful effectiveness with
direct brain-to-passage mapping (P@5: 12.39%). The performance
differential between BPR and neural retrievers ( 3.9× for ColBERT)
is notably smaller than the gap between BPR and EEG-to-text base-
lines ( 3.5× vs E2T+ColBERT), aligning with recent advances in
neurological-semantic decoding [21, 44]. This gap should be inter-
preted in light of established retrieval system development: dense re-
trievers like ColBERT require training on millions of query-passage
pairs [26, 58] to achieve their superior performance over lexical
models like BM25. Given that EEG signals introduce inherent noise
and variability [3], the demonstrated performance of BPR and re-
cent works on scaling properties of EEG-based models [59] suggest
substantial potential for improvement through expanded data col-
lection. These findings address RQ4 by establishing that while EEG
queries do not yet match text performance, they achieve sufficient
effectiveness to warrant further investigation, particularly as larger
EEG datasets become available.

6 ABLATION STUDIES
To further investigate the learning dynamics of the model design
choices, we conduct ablation studies examining the impact of dif-
ferent architectural components and training strategies (Table 4).

Ablation Study 1: EEG-Text Performance. To isolate the im-
pact of input modality on retrieval performance, we train a parallel
text encoder using identical architecture and training data volume
as our EEG encoder, replacing the 840-dimensional EEG features
with 768-dimensional DistilBERT token embeddings. Under these
controlled conditions, the text encoder achieves Precision@5 of
18.11% compared to the EEG encoder’s 12.39%. This performance

Table 4: Ablation study results showing the impact of differ-
ent model components and training strategies. All values are
reported as mean ± standard deviation across 5-fold cross-
validation

Model Variant P@5 P@10 P@20 MRR

Query Encoder Type
Text Encoder 18.11%±1.61 24.98%±2.15 40.98%±3.80 18.60%±1.56

EEG Encoder 12.39%±1.24 20.57%±1.86 32.74%±3.27 11.14%±1.11

Negative Sampling Strategy
In-batch Only 8.47%±0.85 16.34%±1.63 29.31%±2.93 7.89%±0.79

Subject Aware Negatives 12.39%±1.24 20.57%±1.86 32.74%±3.27 11.14%±1.11

Loss Function
No Uniformity 6.73%±0.91 12.34%±1.23 26.31%±2.63 6.40%±0.64

With Uniformity 12.39%±1.24 20.57%±1.86 32.74%±3.27 11.14%±1.11

Pooling Strategy
Mean Pooling 9.82%±0.98 17.93%±1.79 29.45%±2.94 8.76%±0.88

Max Pooling 10.56%±1.06 18.84%±1.88 30.12%±3.01 9.43%±0.94

CLS Token 12.39%±1.24 20.57%±1.86 32.74%±3.27 11.14%±1.11

differential (approximately 31.6%) remains consistent across met-
rics (P@10: 24.98% vs 20.57%, P@20: 40.98% vs 32.74%). The MRR
values (18.60% vs 11.14%) indicate that EEG signals can serve as
effective query representations with approximately 60% of the per-
formance of explicit text queries, despite the inherent complexity
of processing brain signals compared to structured text input.

Ablation Study 2: Negative Sampling. Given the importance
of contrastive learning in dense retrieval settings [26, 28], we eval-
uate our subject-aware negative sampling strategy against basic
in-batch negative sampling. The implementation of subject-aware
sampling through our lookup table mechanism produces substan-
tial improvements across all metrics, with relative gains of 46.3% in
Precision@5 (12.39% vs 8.47%) and 41.2% in MRR (11.14% vs 7.89%).
This significant performance improvement demonstrates that pre-
venting the model from treating different subjects’ EEG signals
for the same passage as negatives is crucial for developing robust
retrieval capabilities. By explicitly filtering out these confounding
examples, the model learns to distinguish between passages based
on their semantic content rather than subject-specific neurological
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patterns, leading to more effective cross-modal alignment between
EEG signals and text representations.

Ablation Study 3: Uniform Loss. To address the challenge of
representation collapse in cross-modal learning, we examine the
impact of incorporating uniformity loss. The addition of this term
proves valuable for effective training, with the full model achieving
84.1% higher Precision@5 (12.39% vs 6.73%) compared to training
without uniformity loss. This improvement suggests that maintain-
ing uniform distribution of embeddings on the unit hypersphere
aids in preventing representation collapse and enabling effective
cross-modal semantic alignment.

Ablation Study 4: Token Pooling. To determine the most ef-
fective method for aggregating sequence-level representations, we
compare CLS token pooling against standard pooling operations.
CLS token pooling consistently demonstrates superior performance
across all metrics (P@5: 12.39%) compared to mean pooling (9.82%)
and max pooling (10.56%). This 26.2% improvement over mean pool-
ing and 17.3% over max pooling indicates that learned aggregation
through the CLS token more effectively captures sequence-level se-
mantic information from EEG signals than simple statistical pooling
operations.

These ablation results help validate our key architectural and
training decisions while providing further insights into cross-modal
learning between EEG signals and text. The relatively small per-
formance gap between EEG and text encoders under controlled
conditions, combined with the clear benefits of hard negative sam-
pling and uniformity loss, demonstrates both the feasibility of direct
brain-semantic mapping and the importance of carefully designed
training strategies for cross-modal alignment.

7 DISCUSSION
The formulation of INs to (textual) queries remains a fundamen-
tal challenge in information retrieval, where users must exter-
nalise often uncertain or ill-defined information needs into ex-
plicit queries [2, 22]. Existing approaches attempting to bridge this
gap through EEG-to-text translation have shown limited effective-
ness, with recent studies identifying significant challenges in learn-
ing generalisable semantic representations from brain signals [25].
To address these limitations, we propose BPR, a framework that
maps EEG signals to passage representations in a shared semantic
space using dense retrieval architectures [26]. Our approach adapts
these architectures for neuroimaging data through specialised EEG
encoders and cross-modal negative sampling strategies, as vali-
dated through comprehensive ablation studies (Section 6). Through
evaluation on the ZuCo dataset, our experimental results demon-
strate that this direct brain-passage mapping achieves significantly
higher performance (8.81% improvement in P@5) compared to exist-
ing EEG-to-text baselines. Analysis of our cross-validation results
shows stable cross-subject performance (standard deviation of 15-
20% across evaluation metrics), suggesting consistent patterns in
the EEG representations.

Our ablation studies reveal that appropriate architectural choices
are crucial for effective brain-semantic alignment. Under matched
training conditions, EEG encoders achieve performance within
31.6% of text encoders (P@5), aligning with recent findings in neu-
rological decoding [21, 44]. Negative sampling strategies improve

performance by 46.3% (P@5) through carefully constructed con-
trastive learning [64], while CLS token pooling provides a 26.2% im-
provement over alternative sequence aggregation methods. These
empirical findings demonstrate progress toward addressing two
fundamental IR challenges: the cognitive uncertainty of translating
visceral information needs into explicit textual queries [60], and
the accessibility barriers faced by users with physical impairments
that limit traditional text input [67]. By establishing the viability
of direct brain-passage mapping, our work provides a foundation
for developing IR systems that may be able to detect and respond
to information needs in their most visceral form, reducing the gap
between users’ internal states and their ability to effectively access
information.

Our work highlights several key challenges for advancing BMI-
enabled IR systems. While our results demonstrate the viability
of direct brain-passage retrieval, the ZuCo dataset’s reliance on
eye-tracking for word-level EEG segmentation highlights the need
for more naturalistic data collection. Future work should develop
methods to process continuous EEG signals without requiring pre-
cise temporal alignment and create larger EEG datasets, as recent
studies show favourable scaling properties with increased data vol-
ume [59]. An notable limitation is the discrepancy between EEG
signals recorded during passive reading versus active search with
genuine information needs [46]. While our approach performs se-
mantic matching between EEG signals and text passages, similar to
existing dense retrieval models [26, 28], reading involves different
cognitive processes than query formulation. Reading primarily in-
volves comprehension, whereas query formulation requires intent
translation and vocabulary selection. Despite this limitation, our
results demonstrate that semantic information can be extracted
from EEG signals, establishing a foundation for future work with
actual information need-driven recordings. Additionally, exploring
complementary cognitive signals such as inner speech [18] could
provide more natural interaction methods. Among neuroimaging
technologies, EEG offers a promising path forward due to its tem-
poral resolution, affordability, and minimal infrastructure require-
ments [3] compared to fMRI or MEG systems [36].

8 CONCLUSION
In conclusion, BPR represents an important step toward address-
ing the long-standing challenge of query formulation in IR sys-
tems. By demonstrating that direct brain-semantic mapping can
achieve meaningful retrieval performance, our work establishes
an empirical foundation for developing IR systems that could po-
tentially operate closer to users’ visceral information needs. The
significant performance improvements over existing EEG-to-text
baselines (8.81% in P@5) validate the potential benefits of elimi-
nating intermediate translation steps, while our technical insights
into contrastive learning and neural architecture design provide
concrete directions for future development. As the applications
of Brain Machine Interfaces in IR advance, the ability to extract
and utilise semantic information directly from brain signals could
enhance how users interact with search systems, particularly in
scenarios where traditional query formulation creates barriers to
effective information access. While work remains to achieve par-
ity with traditional text-based retrieval, our results demonstrate
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that direct brain-to-passage retrieval is both feasible and poten-
tially beneficial to current IR approaches. This foundation enables
the development of more accessible information systems aligned
with human cognitive processes, expanding the range of available
interaction methods for diverse user needs and contexts.
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